INDIAN ASSOCIATION OF PHYSICS TEACHERS NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC 2019-20)
 Question Paper Code: 34

TIME: 120 Minutes
Max. Marks: 240

Attempt All the Eighty Questions
 ONLY ONE OUT OF FOUR OPTIONS IS CORRECT

1. Myoglobin, (Mb), an oxygen storage protein, contains $0.34 \% \mathrm{Fe}$ by mass and in each molecule of myoglobin one ion of Fe is present. Molar mass of $\mathrm{Mb}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ is (Molar mass of $\mathrm{Fe}=55.845 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 16407
(B) 164206
(C) 16425
(D) 164250
2. The following Ellingham diagram depicts the oxidation of 'C', 'CO' and 'Fe'. Which of the following is correct?

I. FeO can be reduced by C below 600 K
II. FeO can be reduced by CO below 600 K
III. FeO can be reduced by C above 1000 K
Iv. FeO can be reduced by CO above 1000 K
(A) II and III
(B) I and IV
(C) I and III
(D) II and IV
3. A balance having a precision of 0.001 g was used to measure a mass of a sample of about 15 g . The number of significant figures to be reported in this measurement is
(A) 2
(B) 3
(C) 5
(D) 1
4. $\quad \mathrm{N}^{3-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+} have the same number of electrons. Which of them will have the smallest and the largest ionic radii respectively?
(A) Mg^{2+} and N^{3-}
(B) Mg^{2+} and Na^{+}
(C) N^{3-} and Na^{+}
(D) F^{-}and N^{3-}
5. The reaction of 2, 4-hexadiene with one equivalent of bromine at $0^{\circ} \mathrm{C}$ gives a mixture of two compounds ' X ' and ' Y '. If ' X ' is 4,5 -dibromohex-2-ene, ' Y ' is
(A) 2,5-dibromohex-2-ene
(B) 2,5-dibromohex-3-ene
(C) 2,3-dibromohex-3-ene
(D) 3,4-dibromohex-3-ene
6. The major product of the following reaction is

7. An electrochemical cell was constructed with $\mathrm{Fe}^{2+} / \mathrm{FeF}$ and Cd and $25^{\circ} \mathrm{C}$ with initial concentration of $\left[\mathrm{Fe}^{2+}\right]=0.800 \mathrm{M}$ and $\left[\mathrm{Cd}^{2+}\right]=0.250 \mathrm{M}$. The EMF of the cell when $\left[\mathrm{Cd}^{2+}\right]$ becomes 0.100 M is

Half cell	$\mathbf{E}^{\mathbf{0}} \mathbf{(V)}$
$\mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cd}^{2+}(\mathrm{aq}) / \mathrm{Cd}(\mathrm{s})$	-0.44

(A) 0.013 V
(B) 0.011 V
(C) 0.051 V
(D) 0.022 V
8. The kinetic energy of the photoelectrons ejected by a metal surface increased from 0.6 eV to 0.9 eV when the energy of the incident photons was increased by 20%. The work function of the metal is
(A) 0.66 eV
(B) 0.72 eV
(C) 0.90 eV
(D) 0.30 eV
9. The alkene ligand $\left(\pi-\mathrm{C}_{2} \mathrm{R}_{4}\right)$ is both a ' σ ' donor and a ' π ' acceptor, similar to the CO ligand in metal carbonyls, and exhibits synergic bonding with metals. Correct order of $\mathrm{C}-\mathrm{C}$ bond length in $\mathrm{K}\left[\mathrm{PtCl}_{2}\left(\pi-\mathrm{C}_{2} \mathrm{R}_{4}\right)\right]$ complexes in which $\mathrm{R}=\mathrm{H}, \mathrm{F}$ or CN is
(A) $\mathrm{H}>\mathrm{F}>\mathrm{CN}$
(B) $\mathrm{H}>\mathrm{CN}>\mathrm{F}$
(C) $\mathrm{CN}>\mathrm{F}>\mathrm{H}$
(D) $\mathrm{F}>\mathrm{H}>\mathrm{CN}$
10. The correct order of CFSE among $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(B) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
11. When acid ' X ' is heated to $230^{\circ} \mathrm{C}$, along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, a compound ' Y ' is formed. If ' X ' is $\operatorname{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{COOH})_{2}$, the structure of ' Y ' is

(A)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{COOH})_{2}$
(B)
(C)

(D)
12. Which of the following is correct about the isoelectronic species Li^{+}and H^{-}?
I. H^{-}is larger in size than Li^{+}
II. Li^{+}is a better reducing agent than H^{-}
III. It requires more energy to remove an electron from H^{-}than from Li^{+}
IV. The chemical properties of the two ions are the same
(A) I only
(B) II and III
(C) I, II and IV
(D) I and II
13. Number of products formed (ignoring stereoisomerism) in the monochlorination of ethylcyclohexane is
(A) 6
(B) 8
(C) 5
(D) 4
14. The number of asymmetric carbon atoms in strychnine, whose structure given below is

(A) 5
(B) 4
(C) 6
(D) 7
15. Molten NaCl is electrolysed for 35 minutes with a current of 3.50 A at $40^{\circ} \mathrm{C}$ and 1 bar pressure. Volume of chlorine gas evolved in the electrolysis is
(A) 0.016 L
(B) 0.98 L
(C) 9.8 L
(D) 1.96 L
16. Which of the following pairs of compounds can be stable while retaining the identity of each compound in the pair over a period of time?
I. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
II. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
III. $\mathrm{FeCl}_{2}, \mathrm{SnCl}_{2}$
IV. $\mathrm{FeCl}_{3}, \mathrm{Kl}$
17. The reaction $\mathrm{xX}(\mathrm{g}) \rightleftharpoons \mathrm{yY}(\mathrm{g})+\mathrm{zZ}(\mathrm{g})$ was carried out at a certain temperature with an initial pressure of $X=30$ bar. Initially ' Y ' and ' Z ' were not present. If the equilibrium partial pressures of ' X ', ' Y ' and ' Z ' are 20,5 and 10 bar respectively $x: y: z$ is
(A) $4: 1: 2$
(B) $2: 1: 2$
(C) $1: 2: 1$
(D) 1:1:2
18. The major product ' P ' formed in the following sequence of reaction is

(i) Ethylene glycol,dry HCl
(ii) NaOBr
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$

19. Sodium lauryl sulphate (SLS) is a surface active agent, which is adsorbed on water surface. The number of molecules of SLS that can be adsorbed on the surface of a spherical water droplet of diameter 3.5 mm is (effective area of one molecule of SLS $=4.18 \mathrm{~nm}^{2}$)
(A) 9.20×10^{12}
(B) 9.20×10^{18}
(C) 1.15×10^{12}
(D) 3.68×10^{13}
20. The unit of Planck's constant, ' h ' is the same as that of
(A) angular momentum
(B) energy
(C) wavelength
(D) frequency
21. The set in which all the species are diamagnetic is
(A) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{NO}$
(B) $\mathrm{O}_{2} \mathrm{O}_{2}^{+}, \mathrm{CO}$
(C) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{CN}^{-}$
(D) $\mathrm{C}_{2}, \mathrm{O}_{2}{ }^{-}, \mathrm{NO}^{+}$
22. A solid comprises of three types of elements, 'P', 'Q' and 'R'. 'P' forms and FCC lattice in which ' Q ' and ' R ' occupy all the tetrahedral voids and half the octahedral voids respectively. The molecular formula of the solid is:
(A) $P_{2} Q_{4} R$
(B) $\mathrm{PQ}_{2} \mathrm{R}_{4}$
(C) $P_{4} Q_{2} R$
(D) $\mathrm{P}_{4} \mathrm{QR}$
23. The following qualitative plots depict the first, second and third ionization energies (I.E.) of Mg, Al and K ., Among the following, the correct match of I.E. and the metal is

(A) $\mathrm{X}-\mathrm{Al} ; \mathrm{Y}-\mathrm{Mg} ; \mathrm{Z}-\mathrm{K}$
(B) $\mathrm{X}-\mathrm{Mg} ; \mathrm{Y}-\mathrm{Al} ; \mathrm{Z}-\mathrm{K}$
(C) $\mathrm{X}-\mathrm{Mg} ; \mathrm{Y}-\mathrm{K} ; \mathrm{Z}-\mathrm{Al}$
(D) X-Al; Y-K; Z-Mg
24. The structure of compound ' X ' $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}\right)$ based on the following tests and observations is

Reagent/s	Observations
Neutral FeCl	No
Lucas reagent	No coloration
$\mathrm{NaNO}_{2} / \mathrm{HCl}$ at 273 K	Yelbidity

(A)

(B)

(C)

(D)
25. The number of stereoisomers is maximum for
(A) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
(B) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{CIB}_{\mathrm{r}}\right]^{+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClB}_{\mathrm{r}}\right]^{+}$
26. Reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ with phenol gives

(A)

(C)

(B)

(D)
27. The power and wavelength emitted by a laser pointer commonly used in Power Point presentations are 1.0 mW and 670 nm respectively. Number of photons emitted by this pointer during a presentation of 5 minutes is
(A) 1.01×10^{9}
(B) 1.01×10^{21}
(C) 1.6×10^{16}
(D) 1.01×10^{18}
28. The work don (kJ) in the irreversible isothermal compression of 2.0 moles of an ideal gas from 1 bar to 100 bar at $25^{\circ} \mathrm{C}$ at constant external pressure of 500 bar is
(A) 2452
(B) 490
(C) 2486
(D) -490
29. Atropine $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}\right)$ is a naturally occurring compound used to treat certain types of poisoning. The degree of unsaturation is atropine is
(A) 7
(B) 6
(C) 5
(D) 4
30. $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (molar mass $=198 \mathrm{~g} \mathrm{~mol}^{-1}$) when dissolved in water forms a complex of Mn^{2+}. An aqueous solution containing 0.400 g of $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was passed through a column of a cation exchange resin and the acid solution coming out was neutralized with 10 mL of 0.20 M NaOH . The formula of the complex formed is
(A) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}$
(D) $\mathrm{Na}\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Cl}_{3}$
31. Which of the following is NOT correct about hydrides?
I. Saline hydrides are stoichiometric and metallic hybdrides are not stoichiometric
II. BeH_{2} is monomeric whereas MgH_{2} is polymeric
III. Hydrides of the elements of Group 13 are electron deficient and those of Group 15 are electron rich
IV. NaH reacts with water and liberates H_{2} whereas $\mathrm{B}_{2} \mathrm{H}_{6}$ does not react with water
(A) IV only
(B) I and III
(C) III only
(D) II and IV
32. The compound ' X ' and ' Y ' formed in the following reaction are

$\xlongequal{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{X}+\mathrm{Y}$
(A) hemiacetals with identical physical and chemical properties
(B) acetals with identical physical and chemical properties
(C) hemiacetals with different physical and chemical properties
(D) acetals with different physical and chemical properties
33. Aqueous solution of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$, is extensively used in municipal waste water treatment. Maximum pH possible in an aqueous solution of slaked lime is $\left(\mathrm{K}_{\mathrm{sp}}\right.$ of $\left.\mathrm{Ca}(\mathrm{OH})_{2}=5.5 \times 10^{-6}\right)$
(A) 1.66
(B) 8.14
(C) 12.04
(D) 12.34
34. An electron present in the third excited state of a H atom returns of the first excited state and then to the ground state. If λ_{1} and λ_{2} are the wavelengths of light emitted in these two transitions respectively, $\lambda_{1}: \lambda_{2}$ is
(A) $4: 1$
(B) $5: 9$
(C) $3: 1$
(D) $2: 1$
35. The percentage dissociation of 0.08 M aqueous acetic acid solution at $25^{\circ} \mathrm{C}$ is (Ka of acetic acid at $25^{\circ} \mathrm{C}=1.8 \times 10^{-5}$)
(A) 2.92
(B) 1.5
(C) 1.2
(D) 4.8
36. In which of the following, is a new $\mathrm{C}-\mathrm{C}$ bond formed in the product?

II. $\mathrm{CH}_{3} \mathrm{MgCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { heat }}$
III. $\mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{MgBr} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$
IV. $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{NaNH}_{2} \xrightarrow{\mathrm{CH}_{3} \mathrm{Br}}$
(A) I, III and IV
(B) II and III
(C) III only
(D) III and iV
37. IUPAC name of the following molecule is

(A) 4-hydroxyhep2-en-5-yen
(B) hept-2-en-5-yn-4-ol
(C) hept-5-en-2-yn-4-ol
(D) 4-hydroxyhept-5-en-2-yne
38. The product/s of the following reaction is/are

(A) I and II
(B) II
(C) III

- (D) IV

39. For which of the following processes, carried out in free space, energy will be absorbed?
I. Separating an electron from an electron
II. Removing an electron from a neutral atom
III. Separating a proton from a proton
IV. Separating an electron from a proton
(A) I only
(B) II and IV
(C) I and III
(D) II only
40. Decay of radioisotopes follows first order kinetics. Radioisotope U^{238} undergoes decay to a stable isotope, Th^{234}. The ratio of the number of atoms of U^{238} to that of Th^{234} after three half lives is
(A) $1 / 3$
(B) $3 / 4$
(C) $1 / 4$
(D) $1 / 7$
41. The anhydride of HNO 3 is
(A) NO
(B) NO_{2}
(C) $\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{N}_{2} \mathrm{O}_{5}$
42. Which of the following is correct?
I. Sodium (Na) is present as metal in nature
II. $\mathrm{Na}_{2} \mathrm{O}_{2}$ is paramagnetic
III. NaO_{2} is paramagnetic
IV. Na reacts with N_{2} to form $\mathrm{Na}_{3} \mathrm{~N}$
(A) III only
(B) II and IV
(C) I, III and IV
(D) II, III and IV
43. An excess of aqueous ammonia is added to three different flasks (F_{1}, F_{2}, F_{3}) containing aqueous solutions of $\mathrm{CuSO}_{4}, \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and NiSO_{4} respectively. Which of the following is correct about this addition?
I. A precipitate will be formed in all three flasks
II. Ammonia acts as a base as well as a ligand exchange reagent in F_{1} and F_{3}
III. A soluble complex of NH_{3} and the metal ion is formed in F_{1} and F_{3}
IV. A precipitate will be formed only in F_{2}
(A) I only
(B) IV only
(C) II and IV
(D) II, III and IV
44. The reagent/s that can be used to separate norethindrone and novestrol from their mixture is/are

I: HCl
II. NaOH
III. NaHCO_{3} IV. NaNH_{2}
(A) III
(B) I and IV
(C) I, II and III
(D) II
45. Which of the followina is/are electrobhilic aromatic substitution reaction/s?

III

(A) II, III and IV
(B) II and III
(C) I, II and III
(D) II only
46. Among the halides $\mathrm{HCl}_{3}(\mathrm{I}), \mathrm{PCl}_{3}(\mathrm{II})$ and AsCl_{3} (III), more than one type of acid in aqueous solution is formed with
(A) I, II and III
(B) II only
(C) I and II
(D) II and III
47. The normal boiling point and $\Delta \mathrm{H}_{\text {vap }}$ of a liquid ' X ' are 400 K and $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Assuming $\Delta \mathrm{H}_{\text {vap }}$ to be constant, which of the following is correct?
I. $\Delta \mathrm{S}_{\text {vap }}>100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 400 K and 0.5 atm
II. $\Delta \mathrm{S}_{\text {vap }}<100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 400 K and 1 atm
III. $\Delta \mathrm{S}_{\text {vap }}<100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at $400 \mathrm{~K}^{2}$ and 2 atm
IV. $\Delta \mathrm{S}_{\text {vap }}=100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at $400 \mathrm{~K}^{1}$ and 1 atm
(A) II and IV
(B) II only
(C) I and III
(D) I, III and IV
48. About the energy level diagram given below, which of the following statement/s is/are correct?

I. The reaction is of two steps and ' R ' is an intermediate
II. The reaction is exothermic and step 2 is rate determining
III. ' Q ' is an intermediate and ' R ' is the transition state for the reaction $M \rightarrow Q$
IV. ' P ' is the transition state for the reaction $Q \rightarrow N$
(A) III and IV
(B) I, III and IV
(C) I, II and IV
(D) III only
49. The $\mathrm{F}-\mathrm{X}-\mathrm{F}$ bond angle is the smallest in (X is the central atom)
(A) CF_{4}
(B) NF_{3}
(C) OF_{2}
(D) XeF_{5}^{-}
50. The correct IUPAC name of the compound, $\left[\mathrm{Pt}(\mathrm{py})_{4}\right]\left[\mathrm{Pt}(\mathrm{Br})_{4}\right]$ is
(A) tetrapyridineplatinum(II) tetrabromidoplatinate(II)
(B) tetrabromidoplatinum(IV) tetrapyridineplatinate(II)
(C) tetrabromidoplatinate(II) tetrapyridineplatinum(II)
(D) tetrapyridineplatinum(IV) tetrabromidoplatinate(IV)
51. All four types of carbon $\left(1^{\circ}, 2^{\circ}, 3^{\circ}\right.$ and $\left.4^{\circ}\right)$ are present in

I

II

III

IV
(A) I, II and III
(B) II, III and IV
(C) I, II and IV
(D) II and III
52. The mass (g) of NaCl that has to be dissolved to reduce the vapour pressure of 100 g of water by 10% (Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$) is
(A) 36.11 g
(B) 17.54 g
(C) 82.25 g
(D) 3.61 g
53. The most acidic hydrogen in the following molecule is

(A) I
(B) II
(C) III
(D) IV
54. Two isomeric hydrocarbons ' X ' and ' Y ' $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$, give the same product $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ on catalytic hydration with dilute acid. However, they form different products but with same molecular formula ($\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{4}$) when treated with excess bromine.
' X ' and ' Y ' are

\&

\&

(A)

(C)
(B)

$$
\text { -: } 12 \text { :- }
$$

59. Which atom/s will have a δ^{+}charge in the following molecule?

(A) I and III
(B) II only
(C) II and III
(D) II and IV
60. $\quad 2.0$ moles of an ideal gas expands isothermally $\left(27^{\circ} \mathrm{C}\right)$ and reversibly from a pressure of 1 bar to 10 bar. The heaviest mass that can be lifted through a height of 10 m by the work of this expansion is
(A) 50.8 kg
(B) 50.8 g
(C) 117.1 kg
(D) 117.1 g
61. A commercial sample of oleum $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$ as labeled as ' 106.5% oleum' contains 6.5 g of water. The percentage of free SO_{3} in this oleum sample is
(A) 2.88
(B) 28.8
(C) 0.029
(D) 0.28
62. Which of the following species has one lone pair of electrons on the central atom?
(A) ClF_{3}
(B) I_{3}^{-}
(C) I_{3}^{+}
(D) SF_{4}
63. Among the following, the complex ion/s that will have a magnetic moment of $2.82 \mathrm{~B} . \mathrm{M}$. is/are
I. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
II. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
III. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
IV. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(A) I and IV
(B) II only
(C) II and III
(D) II, III and IV
64. Morphine, a pain killer is basic with the molecular formula $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$. The conjugate acid of morphine is
(A) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}^{+}$
(B) $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$
(C) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}^{-}$
(D) $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}^{+}$
65. A suboxide of carbon, $\mathrm{C}_{3} \mathrm{O}_{2}$, has a linear structure. Which of the following is correct about $\mathrm{C}_{3} \mathrm{O}_{2}$?
I. Oxidation state of all three C atoms is +2
II. Oxidation state of the central C atom is zero
III. The molecule contains 4σ and 4π bonds
IV. Hybridization of the central carbon atom is sp^{2}
(A) I and IV
(B) II and III
(C) II and IV
(D) III only
66. Among the following, the compounds with highest and lowest boiling points respectively are

I

II

III

IV \cdot

V
(A) I and III
(B) II and III
(C) I and IV
(D) II and V
67. At $25^{\circ} \mathrm{C} \mathrm{K}$ a HPO_{4}^{2-} are 4.8×10^{-13} and 6.3×10^{-8} respectively. Which of the following is correct?
(A) HPO_{4}^{2-} is a stronger acid than HSO_{3}^{-}and PO_{4}^{3-} is a weaker base than SO_{3}^{2-}
(B) HPO_{4}^{2-} is a weaker acid than HSO_{3}^{-}and PO_{4}^{3-} is a weaker base than SO_{3}^{2-}
(C) HPO_{4}^{2-} is a weaker acid than HSO_{3}^{-}and PO_{4}^{3-} is a stronger base than SO_{3}^{2-}
(D) HPO_{4}^{2-} is a stronger acid than HSO_{3}^{-}and PO_{4}^{3-} is a stronger base than SO_{3}^{2-}
68. The change in internal energy ($\Delta \mathrm{U}$) for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\ell)$ when 2.0 moles each of $\mathrm{Br}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ react is $\left(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) ; \Delta \mathrm{H}_{\text {reaction }}=-109 \mathrm{~kJ} ; \Delta \mathrm{H}_{\text {vap }}\right.$ or $\left.\mathrm{HBr}=213 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(A) -644 kJ
(B) 644 kJ
(C) -322 kJ
(D) -1070 kJ
69. The structure that represents the major intermediate formed in the bromination of toluene is

(A)

(B)

(C)

(D)
70. About sea water, which of the following statement/s is/are correct?
I. Frozen sea water melts at a lower temperature than pure ice
II. Boiling point of sea water increases as it evaporates
III. Sea water boils at a lower temperature than fresh water
IV. Density of sea water at STP is same as that of fresh water
(A) I only
(B) I and II
(C) I, II and III
(D) III only

$$
\text { -: } 14 \text { :- }
$$

71. Saran wrap, a polymer used in food packaging is a copolymer of 1, 1-dichloroethene and vinyl chloride. In the chain initiation step, 1, 1-dichloreothene generates a free radical which reacts with vinyl chloride. Structure of Saran wrap is

(A)

(C)

(B)

(D)
72. The alkene ' Y ' in the following reaction is

73. In solid state, PCl_{5} exists as $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$. The hybridization of P atoms in this solid is/are
(A) $s p^{3} d\left(d=d_{x}{ }^{2}-y^{2}\right)$
(B) $\mathrm{sp}^{3} \mathrm{~d}\left(\mathrm{~d}=\mathrm{d}_{\mathrm{z}}{ }^{2}\right)$
(C) sp^{3} and $\mathrm{sp}^{3} \mathrm{~d}^{2}\left(\mathrm{~d}=\mathrm{d}_{\mathrm{x}}{ }^{2}-\mathrm{y}^{2}, \mathrm{~d}_{\mathrm{z}}{ }^{2}\right)$
(D) $\mathrm{sp}^{3} \mathrm{~d}$ and $\mathrm{dsp}^{3}\left(\mathrm{~d}=\mathrm{d}_{\mathrm{z}}{ }^{2}\right)$
74. Which of the following compounds have chiral carbon atoms/s?

(A) I and II
(B) I, III, IV and V
(C) II, IV and V
(D) II, III and IV
75. The crystal defect indicated in the diagram below is

(A) Frenkel defect
(B) Schottky defect
(C) Frenkel and Schottky defects
(D) Interstitial defect
76. If the standard electrode potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ are -0.04 V and -0.44 V respectively, then that of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is
(A) 0.76 V
(B) -0.76 V
(C) 0.40 V
(D) -0.40 V
77. Given below is the data for the reaction $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Temperature (K)	$\mathrm{k}_{\mathrm{f}}\left(\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right)$	$\mathrm{k}_{\mathrm{b}}\left(\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right)$
1400	0.20	1.1×10^{-6}
1500	1.3	1.4×10^{-5}

The reaction is
(A) exothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=3.79 \times 10^{-6}$
(B) endothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=2.63 \times 10^{-5}$
(C) exothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=1.8 \times 10^{5}$
(D) endothermic and $\mathrm{K}_{\text {eq }}$ at $1500 \mathrm{~K}=9.28 \times 10^{-4}$
78. The major product ' P ' formed in the following reaction is (* denotes radioactive carbon)

-: 16 :-

(A)

(C)

(B)

(D)
79. A helium cylinder in which the volume of gas $=2.24 \mathrm{~L}$ at STP ($1 \mathrm{~atm}, 273 \mathrm{~K}$) developed a leak and when the leak was plugged the pressure in the cylinder was seen to have dropped to 550 mm of Hg . The number of moles of He gas that had escaped due to this leak is
(A) 0.028
(B) 0.072
(C) 0.972
(D) 0.099
80. Lipoic acid with the following structure is a growth factor required by many organisms. Percentages of ' S ' and ' O ' in lipoic acid respectively are (atomic masses of ' S ' and ' O ' are $32.065 \mathrm{~g} \mathrm{~mol}^{-1}$ and $15.999 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively)

Lipoic acid

(A) 33.03, 16.48
(B) 31.11, 18.24
(C) $31.11,15.52$
(D) $31.42,15.68$

